MPE Sample Test

Question 1

For
$$x, y > 0$$
, $\sqrt{18 x^3 y^3} =$

a.
$$\bigcirc 3x^2y^2\sqrt{2xy}$$

b.
$$\bigcirc$$
 3 $m{x}m{y}\sqrt{m{x}\ m{y}}$

c.
$$\bigcirc$$
 3 $xy\sqrt{2 x y}$

d.
$$9xy\sqrt{2xy}$$

e.
$$\bigcirc 9x^2y^2\sqrt{2xy}$$

Question 2

$$(x^3 + 2 x^2 - 2 x) - (2 x^3 + 2 x - 1) =$$

a.
$$\bigcirc 3 x^3 + 2 x^2 - 1$$

b.
$$\bigcirc -x^3 + 2x^2 + 1$$

c.
$$\Theta - x^3 + 2 x^2 - 4 x - 1$$

d.
$$\bigcirc -x^3 + 2 x^2 - 4 x + 1$$

e.
$$\bigcirc 3 x^3 + 2 x^2 - 4 x + 1$$

Question 3

In a certain company, 1100 of the employees are men. What is the total number of employees if 5 out of every 11 employees are men?

- a. 0484
- b. \bigcirc 12 100
- c. \bigcirc 2420
- d. \bigcirc 1320
- e. \bigcirc 20

One of the factors of $2x^2 + 5x + 3$ is

- a. \bigcirc 2 x 3
- b. O Will not factor.
- c. $\bigcirc x + 1$
- e. ⊝ *x* − 1

Question 5

The positive solution of the equation $x^2 + 5 = 19$ lies between

- $a. \odot 6$ and 7.
- b. \bigcirc 4 and 5.
- $c. \odot 5$ and 6.
- d. \bigcirc 2 and 3.
- $e. \odot 3$ and 4.

Question 6

A customer redeemed 25 coupons, some worth 50 ¢ and some worth 35 ¢, for a total of \$10.10. If x represents the number of 50 ¢ coupons redeemed, which of the following equations would be used to correctly solve for x?

- a. \bigcirc 25 (50 x) + 25 (35 x) = 1010
- b. $\bigcirc 0.5 x + 0.35 (25 x) = 1010$
- c. $\bigcirc 50 \ x + 35 \ (25 x) = 1010$
- d. $\bigcirc 50 \ x + 35 \ (25 x) = 10.1$
- e. $\bigcirc 35 x + 50 (25 x) = 1010$

$$(3 x^3 y) (-x^2 y^3)^3 =$$

a.
$$\bigcirc -3 \ x^9 \ y^{10}$$

b.
$$\odot -3 \ x^5 \ y^{10}$$

c.
$$\bigcirc -3 \ x^8 \ y^7$$

d.
$$\bigcirc -3 x^9 y^9$$

Question 8

$$2(3-(3-5)) =$$

c.
$$\bigcirc$$
 -2

d.
$$\bigcirc -10$$

e.
$$\odot$$
 8

Question 9

Solve $6x + 10 \ge -2$ for x.

a.
$$\bigcirc x \leq -2$$

b.
$$\bigcirc x \ge -\frac{11}{3}$$

c.
$$\bigcirc \mathbf{x} \in (-\infty, \infty)$$

d.
$$\bigcirc x \ge -2$$

The length L of a spring is given by $L = \frac{5}{4} F + 1$,

where F is the applied force. What force F will produce a length of 15?

- a. $\bigcirc \frac{59}{5}$
- b. $\bigcirc \frac{35}{2}$
- c. $\bigcirc \frac{56}{5}$
- d. $\bigcirc \frac{79}{4}$
- e. $\bigcirc \frac{64}{5}$

Question 11

If x + 6 = 4x + 5, then x = ?

- a. \bigcirc $\frac{11}{3}$
- b. $\bigcirc \frac{1}{5}$
- c. $\bigcirc -\frac{11}{3}$
- $d. \ \ominus \frac{1}{3}$
- e. $\bigcirc -\frac{1}{5}$

Question 12

Find the y - coordinate of the point on the graph of $8 \times 4 \times 4 \times 1 = 0$ with an x - coordinate of 3.

- a. $\bigcirc -\frac{13}{8}$
- b. \odot 6
- c. \bigcirc -7
- d. $\bigcirc -\frac{23}{4}$
- e. $\bigcirc -\frac{25}{4}$

$$3x-3(x-4)+(y-4) =$$

c.
$$\odot$$
 16 - y

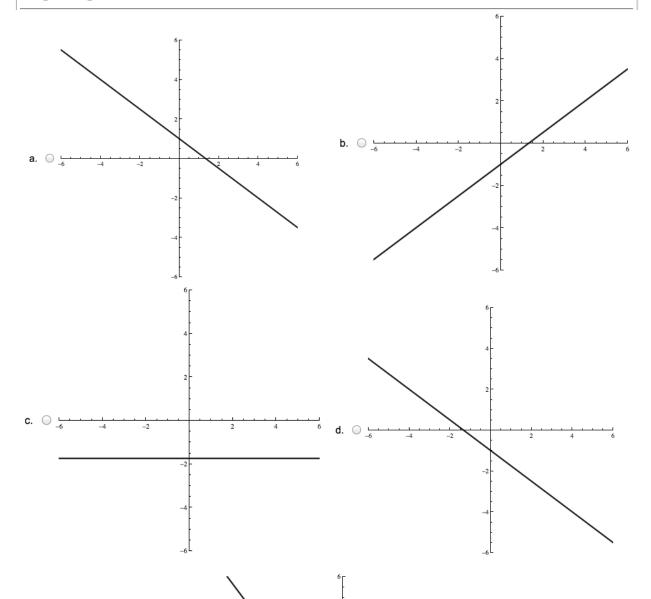
d.
$$\bigcirc y + 16$$

e.
$$\bigcirc$$
 y + 8

Question 14

If
$$6(y-3) = -3(x+1)$$
, then $y = ?$

a.
$$\bigcirc \frac{1}{6} (4 - 3x)$$


b.
$$\bigcirc -\frac{x}{2}$$

c.
$$\bigcirc \frac{5-x}{2}$$

d.
$$\odot \frac{1}{6} (19 - 3 x)$$

e.
$$\bigcirc$$
 5 – 2 y

Graph -4y - 3x = 4.

What is the complete set of values of x

that may not be used in the expression $\frac{x-2}{x^2+6x}$?

a.
$$\bigcirc \{-6, 0\}$$

b.
$$\bigcirc \{-6, 6\}$$

d.
$$\bigcirc$$
 { 2 }

e.
$$\bigcirc$$
 $\{-6\}$

Question 17

For x > 0, $\sqrt{121 x} - \sqrt{25 x} =$

d.
$$\bigcirc -14 \sqrt{x}$$

Question 18

$$\frac{3}{x + 2} - \frac{8}{x^2 - 4} =$$

a.
$$\bigcirc \frac{8}{x^2-4} + \frac{3(x-2)}{(x+2)^2}$$

b.
$$\bigcirc \frac{3 x - 14}{x^2 - 4}$$

$$c. \bigcirc \frac{3x+2}{x^2-4}$$

$$d. \bigcirc \frac{3 x - 2}{x^2 - 4}$$

e.
$$\odot \frac{3 x + 14}{x^2 - 4}$$

$$\frac{x^{-3}y^{-1}}{x^3y^{-1}} =$$

a.
$$\bigcirc \frac{1}{x^6}$$

b.
$$\bigcirc \frac{1}{y^2}$$

c.
$$\bigcirc$$
 1

d.
$$\bigcirc \frac{x^9}{y}$$

$$e. \ominus \frac{1}{x^6 v^2}$$

Question 20

$$\frac{x^2 - 49}{x^2 + 14 \, x + 49} =$$

a.
$$\bigcirc -\frac{1}{14 \ x}$$

b.
$$\odot \frac{x+7}{x-7}$$

c.
$$\bigcirc$$
 0

$$d. \ \bigcirc -\frac{7}{2 x + 7}$$

$$e. \ \bigcirc \ \frac{x-7}{x+7}$$

Question 21

If
$$1 + \frac{7}{x} = \frac{8x+5}{x}$$
, then $x = ?$

a.
$$\bigcirc \left\{ \frac{2}{7} \right\}$$

b. \odot No solution.

c.
$$\bigcirc \left\{0, \frac{2}{7}\right\}$$

d.
$$\bigcirc \left\{ \frac{3}{8} \right\}$$

e.
$$\bigcirc\left\{-\frac{1}{4}, \frac{1}{2}\right\}$$

$$4(3 x + 2 y)^2 =$$

a.
$$\bigcirc$$
 12 x^2 + 48 $x y$ + 8 y^2

b.
$$\bigcirc 36 \ x^2 + 16 \ y^2$$

c.
$$\bigcirc$$
 36 x^2 + 48 x y - 16 y^2

d.
$$\bigcirc$$
 36 x^2 – 48 $x y$ + 16 y^2

e.
$$\bigcirc$$
 36 x^2 + 48 x y + 16 y^2

Question 23

If
$$f(x) = -3x^2 - 4x + 1$$
, then $f(2) = ?$

c.
$$\bigcirc$$
 -21

e.
$$\odot 2 \left(-3 x^2 - 4 x + 1\right)$$

Question 24

In the solution for the system of equations $\{x - 3y = 1, x - 2y = 4\}$, the x - value is ?

c.
$$\bigcirc$$
 10

d.
$$\bigcirc \frac{14}{5}$$

If x = -2 and y = 3, then $x^2 y^3 - \frac{2x}{3y} = ?$

- a. $\bigcirc -\frac{69\ 980}{9}$
- b. 0 112
- c. $\bigcirc \frac{968}{9}$
- d. \bigcirc $\frac{15556}{9}$
- e. $\bigcirc \frac{976}{9}$