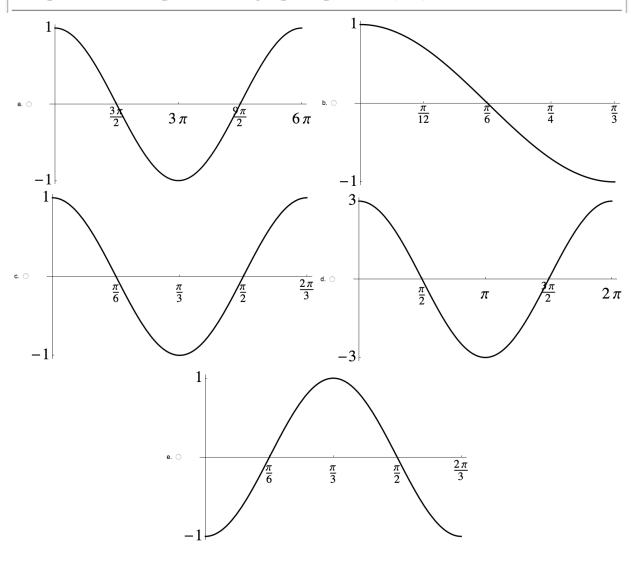
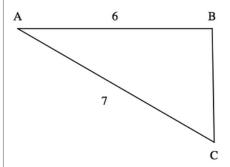
Trigonometry Placement Exam Sample Test


Question 1

For all real numbers x, $\cos^2(99 x) + \sin^2(99 x) =$


- a. \bigcirc 0
- b. \bigcirc 1
- c. $\bigcirc \cos{(198 \ x)}$
- d. \bigcirc 99
- e. \bigcirc sin (198 x)

Question 2

Which of the following graphs best represents one cycle of the graph of $y = \cos(3x)$?

If $m \angle A = 30^{\circ}$, then find the length of BC.

a. o
$$\sqrt{43}$$

b.
$$\circ$$
 85 $-$ 42 $\sqrt{3}$

c.
$$\circ$$
 $\sqrt{85 + 42\sqrt{3}}$

d.
$$\circ$$
 $\sqrt{85-42\sqrt{3}}$

e.
$$\circ$$
 $\sqrt{85}$

Question 4

Which of the following is larger than $\cos\frac{\pi}{6}$?

a.
$$\circ$$
 cos $\frac{\pi}{2}$

b.
$$\circ$$
 cos $\left(-\frac{\pi}{4}\right)$

c.
$$\circ$$
 cos $\frac{\pi}{4}$

e.
$$\circ$$
 cos $\frac{\pi}{3}$

If $m \angle A = 60^{\circ}$ and $m \angle B = 30^{\circ}$, then find the length of AC.

- a. 0 = 5
- b. 5 √3
- c. 0 5
- d. $\circ \frac{5}{\sqrt{3}}$
- $e. \ \bigcirc \ \frac{5 \ \sqrt{3}}{4}$

Question 6

 $\arccos\left(\cos\frac{7}{4}\pi\right) =$

- a. \circ 1
- b. \circ $-\frac{7\pi}{4}$
- c. $\circ \frac{7\pi}{4}$
- d. \circ $-\frac{3\pi}{4}$
- e. $\circ \frac{\pi}{4}$

$$\tan \left(\frac{5}{3}\pi\right) =$$

a.
$$\circ \frac{1}{2}$$

b. ○
$$-\sqrt{3}$$

d.
$$\circ \frac{1}{\sqrt{3}}$$

e.
$$\circ$$
 $-\frac{1}{\sqrt{3}}$

Question 8

 $sin (10 \theta) =$

a.
$$\circ$$
 2 sin (5 θ) cos (5 θ)

b.
$$\circ$$
 10 $\sin(\theta)$

c.
$$\circ$$
 sin(10) sin(θ)

d.
$$\circ$$
 4 sin(5 θ) cos(5 θ)

e.
$$\circ \frac{1}{2} \sin(5\theta)$$

Question 9

Convert 195° to radian measure.

a.
$$\circ \frac{13}{24}$$

b.
$$\circ \frac{13}{12}$$

c.
$$\circ$$
 $\frac{13 \pi}{12}$

d.
$$\circ \frac{13 \, \pi}{24}$$

e.
$$\circ \frac{13}{6\sqrt{2}}$$

If θ represents an acute angle and $\tan\theta \ = \ \frac{5}{8} \, \text{,} \quad \text{then } \sin\theta \ = \$

- a. 0 5
- b. 0 8
- c. \bigcirc $\frac{8}{\sqrt{89}}$
- d. $\circ \frac{5}{\sqrt{89}}$
- e. $\circ \frac{5}{\sqrt{39}}$

Question 11

 $\cot\left(\frac{\pi}{2} - \Theta\right) =$

- a. 2 tan ⊖
- b. 1 cot *θ*
- c. ∞
- d. \circ tan θ
- $e. \circ \frac{1}{2} \tan \theta$

Question 12

For all real numbers x, $\cos (94 x) \cos (92 x) + \sin (94 x) \sin (92 x) =$

- $a. \circ 1 2 \sin^2 x$
- $b. \circ \cos^2 x \sin^2 x$
- c. 0 2 cos² x 1
- d. o All answers listed.
- e. o cos (2 x)

In simplified form, $\frac{3 \cos x \sin x + 6 \cos^2 x}{6 \cos^2 x} =$

- a. o 3 cos x sin x
- b. $\circ \frac{1}{2} \tan x$
- c. $\circ \frac{1}{2} \cot x + 6 \cos^2 x$
- d. $\circ \frac{1}{2} \cot x + 1$
- $e. \circ \frac{1}{2} \tan x + 1$

Question 14

If $\cot^2 \theta = \frac{13}{8}$, then $\sec^2 \theta =$

- $\mathsf{a.} \, \bigcirc \, \frac{\mathsf{21}}{\mathsf{104}}$
- b. $\circ \frac{13}{5}$
- c. $\circ \frac{21}{13}$
- d. $\odot \frac{5}{13}$
- e. $\circ \frac{13}{21}$

Find the complete set of θ in the range $[0, 2\pi)$ that satisfy the equation $2\cos^2\theta + 3\cos\theta = 2$.

a.
$$\bigcirc \left\{-\frac{\pi}{3}, \frac{5\pi}{3}\right\}$$

b.
$$\circ \left\{-\frac{\pi}{3}\right\}$$

c.
$$\bigcirc \left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$$

d.
$$\circ \left\{ \frac{\pi}{3}, \frac{5\pi}{3} \right\}$$

e.
$$\bigcirc$$
 $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$