# Promoting Excellence and Shrinking Excellence Gaps 

Jonathan A. Plucker<br>@JonathanPlucker<br>Victoria Fellows

November 16-17, 2017

A little background

## Quick Quiz!

- How many people worked as smartphone designers in 2007?
- Practically none, and they were all locked in Steve Jobs' basement.


## Quick Quiz!

- What percent of 85 year-olds live in nursing homes and similar facilities?
-11\% as of 2014ı down from 24 \% in

1990. 

## Quick Quiz!

- What percentage of the cells in your body are human?
- Roughly half


## Think

United States employment, by type of work, m

60
Usually sales and office work

Non-routine cognitive


Non-routine manual

generally service jobs: hair stylist, home healthcare aide


Sources: US Population Survey; Federal Reserve Bank of St. Louis

## Who Gets U.S. Patents?



So other than family structure, the workforce, communication, the national and global economy, sources of innovation, and the coming robot apocalypse ...
... nothing has changed.

## The $21^{\text {st }}$ Century ...

- ... is clearly proving to be a brave new world where skills and talents that previously helped us achieve success need to be rethought.
- Part of that is rethinking where talent comes from.

A little data

## Percent of Advanced Scores (625+) on TIMSS Math Assessments

Grade 4

## Percent of Advanced Scores (625+) on TIMSS Science Assessments



## Percent of Students Scoring Advanced on NAEP Grade 4 Math



## Percent of Students Scoring Advanced on NAEP Grade 8 Math



## Percent of Students Scoring Advanced NAEP Grade 4 Reading



## Percent of Students Scoring Advanced NAEP Grade 8 Reading



# How Many StudentsAre Performing AboveGrade-Level? 

FromresearchbyMattMake, MichaelMatthews,ScottPeters, Karen Rambo-Hemandez, and Jonathan Plucker


Vygotsky's Zone of Proximal Development

## TABLE 4

Mastery Rates and Proficiency Probability Scores for Analytic Sample and Corresponding Descriptive Statistics for Teacher-Reported Content Measures

| Student math proficiency levels | Fall kindergarten |  |  | Content measures | Teacher reported days/month on content measures |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Students who have mastered level by fall kindergarten | Proficiency probability scores |  |  |  |  |
|  |  | Mean | $S D$ |  | Mean | $S D$ |
| Proficiency level 1 | 95\% | 0.94 | 0.15 | Basic counting and shapes |  |  |
| Proficiency level 2 | 62\% | 0.58 | 0.34 | Patterns and measurement |  |  |
| Proficiency level 3 | 25\% | 0.23 | 0.31 | Place value and currency |  |  |
| Proficiency level 4 | 7\% | 0.04 | 0.13 | Addition and subtraction |  |  |

Note. Student $n=11,517$; teacher $n=2,176$.

Engel, Claessens, \& Finch, 2013. Teaching Students what they already know? The (mis)alignment between mathematics instructional content and student knowledge in kindergarten. Educational Evaluation and Policy Analysis, 35, 157-178.

## TABLE 4

Mastery Rates and Proficiency Probability Scores for Analytic Sample and Corresponding Descriptive Statistics for Teacher-Reported Content Measures

| Student math proficiency levels | Fall kindergarten |  |  | Content measures | Teacher reported days/month on content measures |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Students who have mastered level by fall kindergarten | Proficiency probability scores |  |  |  |  |
|  |  | Mean | $S D$ |  | Mean | SD |
| Proficiency level 1 | 95\% | 0.94 | 0.15 | Basic counting and shapes | 12.70 | 4.11 |
| Proficiency level 2 | 62\% | 0.58 | 0.34 | Patterns and measurement | 7.68 | 4.44 |
| Proficiency level 3 | 25\% | 0.23 | 0.31 | Place value and currency | 8.61 | 5.12 |
| Proficiency level 4 | 7\% | 0.04 | 0.13 | Addition and subtraction | 4.38 | 4.07 |

Note. Student $n=11,517$; teacher $n=2,176$.

## Teachers spend 12.7 days per month on material that $95 \%$ of K students already have mastered by Fall of Kindergarten.

Engel, Claessens, \& Finch, 2013. Teaching Students what they already know? The (mis)alignment between mathematics instructional content and student knowledge in kindergarten. Educational Evaluation and Policy Analysis, 35, 157-178.

Percent of Students Scoring Above Grade Level

|  | ELA |  |  | Math |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade | WI | CA | TX | WI | CA | TX |
| 3 | $34 \%$ | $23 \%$ | $20 \%$ | $26 \%$ | $19 \%$ | $16 \%$ |
| 4 | $39 \%$ | $29 \%$ | $25 \%$ | $26 \%$ | $18 \%$ | $29 \%$ |
| 5 | $44 \%$ | $34 \%$ | $30 \%$ | $31 \%$ | $22 \%$ | $34 \%$ |
| 6 | $49 \%$ | $34 \%$ | $24 \%$ | $36 \%$ | $27 \%$ | $32 \%$ |
| 7 | $47 \%$ | $38 \%$ | $30 \%$ | $37 \%$ | $28 \%$ | $33 \%$ |

## MAP Test Results


"...students performing above gradelevel are not rare and likely exist in every classroom in every school"

16\% of the variance falls between schools - almost all of the diversity comes from the classroom level!

## Results Summary

1. Very large percentages of students are performing above grade level.
2. Large percentages of students are performing well above grade level.
3. These percentages represent staggeringly large numbers of students.

More than 300,000 $4^{\text {th }}$ grade students demonstrate above grade-level performance in only these three states.

## Results Summary

1. Very large percentages of students are performing above grade level.
2. Large percentages of students are performing well above grade level.
3. These percentages represent staggeringly large numbers of students.

If only $20 \%-25 \%$ of students were scoring above grade level, that would represent 10-12 million students in the US.

Professor Andrew Ho, Harvard University expert on student measurement described our findings as:

## "Obviousness"

http://www.npr.org/sections/ed/2016/09/12/491092575/getting-restless-at-the-head-of-the-class
"...students performing above gradelevel are not rare and likely exist in every classroom in every school, and furthermore in numbers large enough to permit an accelerated classroom of these learners in every school"

## Two Takeaways:

- Classrooms where large percentages of students already are above grade-level, but nearly all of the teacher's focus is on learners working at or below grade-level, are not going to facilitate growth or further development for advanced learners
- There is little support for the current age-based classroom structure as the optimal organizational structure for fostering student development

Table 2. Range of Grade Level Equivalent (GLE) Comprehension Scores on the ITBS for All Students Across Schools

| School | Grade 3 |  |  |  | Grade 4 |  |  |  | Grade 5 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $N$ | Lowest GLE score | Highest GLE score | Range of GLE scores | $N$ | Lowest GLE score | Highest GLE score | Range of GLE scores | $N$ | Lowest GLE score | Highest GLE score | Range of GLE scores |
| Sun Coast Elementary | 117 | 0.6 | 8.3 | 7.7 | 59 | 3.9 | 10.0 | 6.1 | 35 | 5.0 | 9.8 | 4.8 |
| North Lake Magnet | 117 | 2.1 | 9.8 | 7.7 | 105 | 2.6 | 12.6 | 10.0 | 114 | 2.1 | 13.0 | 10.9 |
| Frontier Elementary | 75 | 0.9 | 7.5 | 6.6 | 68 | 1.6 | 11.1 | 9.5 | 74 | 1.9 | 13.0 | 11.1 |
| Eastern River Elementary | 70 | 1.3 | 8.3 | 7.0 | 74 | 1.7 | 11.1 | 9.4 | 83 | 1.4 | 9.8 | 8.4 |
| Park Ridge Elementary | 44 | 1.1 | 4.9 | 3.8 | 70 | 1.3 | 5.8 | 4.5 | 44 | 1.4 | 6.8 | 5.4 |
| All | 423 | 0.6 | 9.8 | 9.2 | 376 | 1.3 | 12.6 | 11.3 | 350 | 1.4 | 13.0 | 11.6 |

Reading Comprehension and Fluency Levels Ranges Across Diverse Classrooms: The Need for Differentiated Reading Instruction and Content
Janine M. Firmender, Sally M. Reis and Sheelah M. Sweeny
Gifted Child Quarterly 2013 57: 3 originally published online 1 October 2012
DOI: 10.1177/0016986212460084

What level of academic diversity do you see in your schools and classrooms?
... well, they aren't.
So when people say, "These kids will take care of themselves" ...

## ExcellenceGaps

Talent on the Sidelines
Excellence Gqps and America's Persistent Talent underclass

## Talent on the Sidelines Results


http://cepa.uconn.edu/mindthegap

## NAEP \% Advanced Math Grade 4



## NAEP \% Advanced Math Grade 4


... because math and reading look better.

## But why not other subjects?

## What's "Advanced" in G4 Science?

- 262 Draw a conclusion about the relationship between volume and temperature based on data
- 262 Anticipate effects of a design decision based on the interdependence of organisms
- 229 Use evidence to critique a conclusion about the mass of a material
- 227 Explain how to produce sounds
- 225 Recognize the cycle of Moon phases

- 218 Describe the different stages of the life cycle of an organism
- 217 Recognize fair test for determining how temperature affects a liquid
- 214 Predict the path of the Sun in the sky


## 2015 NAEP Science Overall Percent Advanced



## 2015 NAEP Science Overall Percent Advanced



NAEP Science - Percent Scoring Advanced: NSLP, Black, Hispanic, American Indian, ELL


## 2015 NAEP Science Percent Advanced



## But What About Kentucky?

## Kentucky 2015 NAEP Math



Kentucky 2015 NAEP
Grade 4 Math


## Kentucky 2015 NAEP Grade 4 Reading



Kentucky 2015 NAEP Science


Kentucky 2015 NAEP Science


## Kentucky 2015 NAEP Grade 4 Science



## Kentucky 2015 NAEP Grade 8 Science



What evidence do you see of excellence gaps in your schools?

## HOW DO EXCELLENCE GAPS CHANGE AS KIDS MOVE THROUGH SCHOOL?

Karen E. Rambo-Hernandez<br>West Virginia University<br>Scott J. Peters<br>University of Wisconsin- Whitewater<br>Jonathan A. Plucker<br>Johns Hopkins University

## THE RESEARCH QUESTIONS

- What trends in excellence gaps exist in math and reading over the academic school year and over the summer?
- What school level variables explain initial differences and changes in the excellence gaps in mathematics during the school year and over the summer?


## THE DEPENDENT VARIABLE

- The difference between the $90^{\text {th }}$ percentile mean scores of non-underrepresented (White and Asian) and underrepresented minority students (Black and Hispanic)
* Difference= Score Non-URM ti_90th - Score URM $_{\text {ti_90th }}$


## RESULTS: GAPS IN READING AND MATHEMATICS



RESULTS: ACHIEVEMENT IN READING OVER TIME


## Results: Group and School Average Achievement - Math



## Results: Group and School Average Achievement - Math



## CONCLUSIONS

- Reading gaps are relatively stable over the elementary grades
- Pick up again in grade 5. Trend?
- Math gaps grow as kids move through school, specifically during the school year


## IMPLICATIONS

- In reading, schools don't appear to be causing the national trend in widening excellence gaps
- Time in school, school-level poverty, demographics, etc. aren't predictive of change in slope
- The lack of change in gaps is inconsistent with prior research
- In mathematics, the widening of gaps was evident as students moved through elementary school
- Consistent with prior research


## IMPLICATIONS

Other possible explanations for discrepant results from our study and previous research in reading:

1. Other studies did not follow cohorts but looked at specific grades across time
2. Differences in initial intercept have been growing over time
3. Gaps only grow later in school ( $>5^{\text {th }}$ grade)

- Unlikely given prior findings by Plucker and colleagues (2010; 2013)

How do youthink your schools impact excellence gaps?

## Big Implication

We can predict with high accuracy that a talented student who is poor and/or Hispanic, Black, or Native American will not perform at advanced levels in K-12 education.

Hence "persistent talent underclass."

## What If We ...

... shrunk the low-income excellence gap in math from $13 \%$ to $6 \%$ in each grade?

EACHYEAR we would have 750,000 more students exhibiting academic excellence.

## Some potential solutions

## From book with Scott Peters:

Published recently by Harvard Education Press



Source: UVA Weldon Cooper Center for Public Service, https://demographics.virginia.edu/DotMap/index.html


## Learn from the Mistakes of Chinese Marathon Runners

## THE WALL STREET JOURNAL.

This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or customers visit http://www.djreprints.com.
http://blogs.wsj.com/chinarealtime/2016/03/25/thousands-of-injuries-mishaps-at-chinese-marathon-prompt-alarm/
CHINA REAL TIME REPORT
Thousands of Injuries, Mishaps at Chinese Marathon Prompt Alarm

## Frontloading Matters!





- Gifted Child Today article on intervention model for excellence gaps available at:
go.uww.edu/peterss


Are you currently using any of these interventions? How well are they working?

## What'sYour District'sTalent DevelopmentPlan?

## 2015 Report Card Study

## EQUAL TALENTS, UNEQUAL OPPORTUNITIES:





Funded by the Jack Kent Cooke Foundation

Identified key excellence and excellence gap policies and outcomes

Determined how each state ranked on those policies and outcomes

New edition to be published in January

## Kentucky Ratings

- Policies
- Excellence: A-
- Excellence Gaps: D
- Participation
- Excellence: A
- Excellence Gaps: C-
- Outcomes
- Excellence: C+
- Excellence Gaps: C
- Among the best 4-5 performing states in the U.S.


## Strengths and Not-Strengths

## STRENGTHS

- SEA reporting/monitoring
- Mandate
- Early K entrance
- State acceleration policy
- MS/HS concurrent enrollment
- Early college/dual enrollment
- Free ACT


## NOT STRENGTHS

- Growth in accountability system
- Universal screening
- Gifted coursework in educator preparation programs
- Mixed funding for dual enrollment


## Strengths and Not-Strengths

## STRENGTHS

- \% students taking AP tests
- \% students identified for services


## NOT STRENGTHS

- \% low-income students taking AP tests
- State doesn't report \% identified students who are low-income


## Big Take-Away of New Report:

- States and districts have a range of important excellence policies ... but they're NOT connected.
-Key questions:
- How does a talented young child move through your schools from K-12?
- How would you describe the process/services to a parent of a talented child?
- Do you include ALL of your excellence programs in your TD plan?
- Gifted, honors, AP, acceleration, grouping, academic counseling, dual credit, aid for economically vulnerable families, etc.
- Does your TD plan address transitions among grade levels? (Biggest parent concern)


## JHU Gifted Education Programs

- Certification Program
- Satisfied MD, PA, DE requirements
- 6 courses
- Do-able in 1 or 2 years
- Can be combined with another JHU certificate to become a master's degree.
- Both programs will be blended by fall 2017, certification program online-only in 2018.
- Includes certification courses
- 11 courses
- Do-able in 2 or 3 years
- Master's Degree Program


## THANKYOU!

Jonathan Plucker<br>Julian C. Stanley Endowed Professor Johns Hopkins University

@JonathanPlucker
jplucker@jhu.edu
https://www.linkedin.com/in/JonathanPlucker http://jplucker.com

